Synthesis of Benzo[c]thiophenes by Rhodium(III)-Catalyzed Dehydrogenative Annulation

Keita Fukuzumi,[†] Yuto Unoh,[†] Yuji Nishii,[‡] Tetsuya Satoh,[§] Koji Hirano,[†] and Masahiro Miura^{*,†}

 † Department of Applied Chemistry and ‡ Frontier Research Base for Global Young Researchers, Graduate School of En[gine](#page-6-0)ering, Osaka University, Suita, Osaka 565-0871, Japan

§ Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

S Supporting Information

[AB](#page-6-0)STRACT: [The dehydrog](#page-6-0)enative annulation of thiophen-2 carboxamides with 2 equiv of alkynes proceeds efficiently in the presence of a rhodium catalyst and a copper oxidant to furnish multiply substituted benzo $[c]$ thiophenes. Some of the synthesized benzo $[c]$ thiophenes exhibited strong solid-state fluorescence.

■ INTRODUCTION

Transition-metal-catalyzed direct C−H functionalization reaction has recently emerged as a useful synthetic tool for the stepand atom-economical construction of complex molecules.¹ In particular, the dehydrogenative cyclization of heteroaromatic co[m](#page-6-0)pounds with alkynes^{2} has been utilized as one of the most effective and straightforward methods for the synthesis of benzo-fused heteroaren[es](#page-6-0), whose skeletons are of substantial importance in the area of pharmaceutical chemistry as well as materials chemistry.3,4 Among these, thiophene-based polycyclic molecules have attracted much interest because of their potential use in va[riou](#page-6-0)s electronic devices including organic field effect transistors (OFETs) and organic light-emitting diodes $(OLEDs)$.⁵ Our continuous research interest in the rhodium-catalyzed direct C−H functionalization reaction of thiophenes^o pro[mp](#page-6-0)ted us to develop a new synthetic protocol of benzo $[c]$ thiophenes, which are generally called isothianaph[t](#page-6-0)henes.⁷ It has been revealed that polybenzo $[c]$ thiophenes possess unique optical properties originating from their narrow H[O](#page-6-0)MO−LUMO energy gaps over the past few decades.⁸ More recently, functionalized benzo $[c]$ thiophene monomers were also synthesized aiming to their use in solar c[el](#page-6-0)ls,⁹ electroluminescence devices, 10 and so on.¹¹ A general method for $\frac{\partial c}{\partial t}$ thioph[e](#page-6-0)ne synthesis is the ring closure of the corresponding ortho-d[ica](#page-6-0)rbonyl benz[en](#page-6-0)e derivatives by treating with Lawesson's reagent (Scheme 1a).^{7,12,13} In this protocol, the structural versatility of benzo $[c]$ thiophenes is highly dependent upon the availability of the [dicarb](#page-6-0)onyl compounds, and furthermore, daunting and time-consuming processes are required to obtain asymmetrically substituted benzo $[c]$ thiophenes. For the purpose of structural modification and fine-tuning of optical properties, new synthetic approaches toward benzo $[c]$ thiophenes are in high demand. We herein report a synthesis of benzo $[c]$ thiophenes by Rh(III)-catalyzed dehydrogenative annulation of thiophen-2-carboxamides 1 with 2 equiv of alkynes 2 (Scheme 1b). In this system, the amide

Scheme 1. Synthesis of Benzo $[c]$ thiophenes

(a) Traditional synthesis of benzo[c]thiophenes

(b) This work: Rh-catalyzed dehydrogenative annulation

directing group plays a crucial role for the expeditious construction of various 4,5,6,7-substituted benzo $[c]$ thiophenes 3 from the simple thiophene derivatives. In expectation, 10 some of the isothianaphthene products showed strong fluorescence in the solid state.

■ RESULTS AND DISCUSSION

On the basis of our previous study on the amide-directed dehydrogenative cyclization with alkynes,¹⁴ we initially examined the reaction of pyrrolidin-1-yl(thiophen-2-yl) methanone $(1a)$ with diphenylacetylene $(2a)$ [as](#page-6-0) the representative substrates in the presence of $[Cp*Rh(MeCN)_3][SbF_6]_2$ (2.5 mol %, Cp* = pentamethylcyclopentadienyl) and $Cu(OAc), H, O$ (2.0 equiv) as catalyst and oxidant, respectively, in DMF. As expected, the desired benzo $[c]$ thiophene 3aa was obtained in 77% isolated yield (Table 1, entry 1), and the product structure was confirmed by X-ray crystallography (see the Supporting Information). A [neutral](#page-1-0) Rh(III) complex $[Cp*RhCl_2]$, showed inferior catalytic activity to afford the com[parable yield only with a h](#page-6-0)igher catalyst loading (10 mol %

Received: January 6, 2016 Published: February 19, 2016

Table 1. Optimization of Reaction Conditions^a

		Rh catalyst	Ph Ph
	Ph	Cu(OAc) ₂ ·H ₂ O (2.0 equiv)	Ph Ph
	Ph	DMF, 100 °C, 16 h	R S
	2a		3
entry	R	catalyst	yield ^b
1	1-pyrrolidyl $(1a)$	$[Cp*Rh(MeCN)_3][SbF_6]$ $(2.5 \text{ mol } %$	77% (3aa)
$\mathbf{2}$	1-pyrrolidyl $(1a)$	$[Cp*RhCl2]2$ (5.0 mol %)	80% (3aa)
3 ^c	1-pyrrolidyl $(1a)$	$[Cp*Rh(MeCN)_3][SbF_6]$ $(2.5 \text{ mol } \%)$	83% (3aa)
4 ^c	1-pyrrolidyl $(1a)$	$[Cp*Rh(MeCN)3][SbF6]$ ₂ $(4.0 \text{ mol } %)$	95% (3aa)
5 ^c	$NiPr_2(lb)$	$[Cp*Rh(MeCN)3][SbF6]$ $(4.0 \text{ mol } %)$	95% (3ba)
6 ^c	NEt_2 (1c)	$[Cp*Rh(MeCN)_3][SbF_6]_2$ $(4.0 \text{ mol } %)$	95% (3ca)
7 ^c	NMe ₂ (1d)	$[Cp*Rh(MeCN)3][SbF6]$ ₂ $(4.0 \text{ mol } %)$	94% (3da)
$8^{c,d}$	NEt_2 (1c)	$[Cp*Rh(MeCN)_3][SbF_6]_2$ $(4.0 \text{ mol } %)$	36% (3ca)
9 ^c	Me $(1e)$	$[Cp*Rh(MeCN)3][SbF6]$ ₂ $(4.0 \text{ mol } %)$	$n.d.^e$
10 ^c	OMe $(1f)$	$[Cp*Rh(MeCN)_3][SbF_6]_2$ $(4.0 \text{ mol } %)$	$n.d.$ ^e
11 ^c	NMeOMe (1g)	$[Cp*Rh(MeCN)_3][SbF_6]_2$ $(4.0 \text{ mol } %)$	n.d. ^e

^aReaction conditions: A mixture of 1 (0.2 mmol), 2a (0.4 mmol), $Cu(OAc)₂·H₂O$ (0.4 mmol), and Rh catalyst in DMF (2 mL) was beated for 16 h under N_2 . b isolated yield. contained for $\frac{1}{2}$ means used.
dependent of 16 h under N_2 . b isolated yield. contained by $\frac{d}{dx}$ and $\frac{d}{dx}$ and $\frac{d}{dx}$ Toluene (2.0 mL) was used as solvent. e^{ϵ} n.d. = Not detected.

Rh, entry 2). A significant increase of the yield was obtained by increasing the amount of alkyne 2a (2.5 equiv) as well as that of the Rh catalyst (4.0 mol %) (entries 3 and 4). Under the optimized reaction conditions (entry 4), we investigated with

Scheme 2

respect to the directing groups on thiophene. N,N-Diisopropylamide 1b, N,N-diethylamide 1c, and N,N-dimethylamide 1d were all applicable to this reaction system to give the corresponding benzo $[c]$ thiophenes in excellent yields (entries 5−7). When the reaction of amide 1c was conducted in toluene solvent, a 1:1 coupling product 4ca was obtained in 23% yield along with the formation of 3ca in 36% yield (entry 8 and Scheme 2, eq 1). This result clearly indicates that the first C−H cleavage occurred at C3 of the thiophene, and additionally, DMF solvent would prevent protonation to give 4ca before the second C−H scission at C4 in a catalytic cycle (vide infra). In sharp contrast, use of methyl ketone 1e, methyl ester 1f, and N,O-dimethylhydroxyamide 1g (Weinreb amide) as directing groups, instead of the tertiary amides, did not trigger any C−C bond forming reactions (entries 9−11). 2-(Thiophen-2-yl) pyridine (5) underwent cyclization to form the corresponding benzo $[c]$ thiophenes 6 in 42% yield under the present reaction conditions (Scheme 2, eq 2). O-Methyloxime 7 was converted into thieno[2,3-c]pyridine 8 incorporating three alkyne molecules as reported previously (Scheme 2, eq 3).¹⁵

Next, we evaluated the scope and limitations of the present reaction with N,N-diethylamide 1c and various alk[yne](#page-7-0)s (Table 2). Substituents on the phenyl rings of diphenylacetylene, including electron-donating groups (2b, 2c, 2g, 2h[\) and](#page-2-0) [el](#page-2-0)ectron-withdrawing groups (2d, 2e, 2f), did not significantly affect the reaction, and the corresponding benzo $[c]$ thiophenes 3 were obtained in high to excellent yields (entries 1−7). While a limitation was encountered with aliphatic alkyne 2i to afford the corresponding product 3ci in a low yield (entry 8), it was found that $[Cp*RhCl₂]$ gave a better result (entry 9). No reaction proceeded with diethyl acetylenedicarboxylate (2j, entry 10). A terminal alkyne 2k dimerized under the catalytic condition to produce 1,4-bis(4-methoxyphenyl)buta-1,3-diyne, and the desired product was not detected (entry 11). An asymmetric alkyne 2l gave an inseparable mixture of regioisomers in 37% yield (entry 12).

Table 2. Substrate Scope for Alkynes^a

a
Reaction conditions: A mixture of 1c (0.2 mmol), 2 (0.5 mmol), Cu(OAc)₂·H₂O (0.4 mmol), and [Cp*Rh(MeCN)₃][SbF₆]₂ (4.0 mol %) in DMF (2.0 mL) was heated for 16 h under N₂. *b* Isolated yield. CDetermined by GC analysis. d [Cp*RhCl₂]₂ (5.0 mol %) was used as catalyst. ^en.d. = Not detected. f_A mixture of isomers was formed and not fully characterized.

Substrate scope for C5-substituted thiophenes was also examined (Table 3). Both methyl- and phenyl-substituted thiophenes, 1h and 1i, smoothly underwent annulation to give

^aReaction conditions: A mixture of 1c (0.2 mmol), 2 (0.5 mmol), $Cu(OAc)_2·H_2O$ (0.4 mmol), and $[Cp*Rh(MeCN)_3][SbF_6]_2$ (4.0 mol $\%$) in DMF (2.0 mL) was heated for 16 h under N₂. Bolated yield.

The corresponding appulation product 3ka was not detected and 3ca The corresponding annulation product 3ka was not detected, and 3ca was obtained as a major product.

the desired benzo[c]thiophenes 3ha and 3ia in 90% and 72% yields, respectively (entries 1 and 2). Reaction of 1i with an electron-deficient alkyne 2e afforded compound 3ie as expected (entry 3). It was noteworthy that the C−Cl bond of 1g remained intact during the reaction (entry 4); however, the entire hydrodebromination proceeded with 5-bromothiophene 1h to give 3ca as the major product (entry 5). Instead of using C5-substituted thiophenes as substrates, the postfunctionalization of the thiophene C5 position was also possible; an aryl group was installed in 3ca via direct cross-coupling reaction with a simple $Pd(OAc)₂/PPh₃$ catalyst system (Scheme 3, eq 4).¹⁶ On the other hand, no cyclization product was detected from furan-2-carboxamide or pyrrole-2-carboxa[mides \(Sche](#page-3-0)me 3, [eq](#page-7-0) 5).

A plausible mechanism for the dehydrogenative annu[lation is](#page-3-0) [il](#page-3-0)lustrated in Scheme 4. The first amide-directed C−H cleavage appears to occur at the C3 position of thiophene 1 to generate the interme[diate](#page-3-0) A, and the subsequent insertion of alkyne 2 gives the seven-membered Rh(III) complex B. In advance of the second C−H scission event, the amide-dissociated Rh(III) species C may be stabilized by DMF solvation to prevent undesired protonation that leads to the hydroarylation product 4 (Scheme 2, eq 1). Accordingly, the five-membered rhodacycle complex D undergoes sequential alkyne insertion into one of th[e Rh](#page-1-0)−C bonds and reductive elimination to afford the annulated product 3. The oxidation of thus formed $Cp*Rh(I)$

Scheme 3

species by $Cu(II)$ to regenerate the catalytically active Cp*Rh(III) species closes the catalytic cycle.

Finally, a preliminary study on the optical properties of the synthesized benzo[c]thiophenes was carried out (Figure 1). It was found that a benzo[c]thiophene 3ia, which has an additional phenyl group at its C5 position, exhibite[d a relati](#page-4-0)vely strong solid-state photoluminescence $(\lambda_{em}$ 491 nm) in comparison to a typical emitter, tris(8-hydroxyquinolino) aluminum (Alg_3) , probably because the perpendicularly substituted phenyl groups to the benzo $[c]$ thiophene core provided steric bulkiness to minimize an intermolecular quenching.¹⁷ A further investigation revealed that 3ie (R^2 = 4-CF₃C₆H₄) was highly luminescent (λ_{em} 461 nm) with an absolute q[uan](#page-7-0)tum yield of 0.53.

■ CONCLUSION

We have demonstrated that the rhodium-catalyzed dehydrogenative annulation of thiophen-2-carboxamides with 2 equiv of alkynes can afford the corresponding multiply substituted $\frac{\partial c}{\partial t}$ thiophenes in high yields. This simple and straightforward synthesis would ensure a rapid access to certain organic optical devices based on the benzo $[c]$ thiophene framework. Thus, the preliminary survey on the luminescent properties of the products indicated that they, especially fully substituted compounds, may act as effective emitters in their solid state.

EXPERIMENTAL SECTION

General. Nuclear magnetic resonance spectra were measured at 400 MHz ($\rm ^1H$ NMR), at 100 MHz ($\rm ^{13}C$ NMR), and at 376 MHz ($\rm ^{19}F$ NMR) in 5 mm NMR tubes. All ¹H NMR chemical shifts were

Figure 1. Fluorescence spectra of 3ca, 3ia, 3ie, and Alg_3 in solid state excited at 380 nm.

reported in ppm relative to the resonance in TMS at δ 0.00. All ¹³C NMR chemical shifts were reported in ppm relative to carbon resonance in chloroform- d_1 at δ 77.16 as appeared in the spectra. High-resolution mass spectra (HRMS) were measured by APCI-TOF. Photoluminescence spectra and absolute quantum yields were measured as reported previously.¹⁸ Thiophene-2-carboxamides (1a− 1k) were synthesized by standard condensation reaction of the corresponding thiophene-2-carbo[xlic](#page-7-0) acids and amines by treating with 1-(3-(dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and N,N-dimethyl-4-aminopyridine (DMAP). Alkynes 2b−2h were prepared as reported previously.^{6b} Rhodium complexes $[Cp*Rh(MeCN)_3][SbF_6]_2$ and $[Cp*RhCl_2]_2$ were prepared according to the literature procedures.¹⁹ All other reage[nts](#page-6-0) were purchased from commercial resources and used without further purification.

General Procedure [fo](#page-7-0)r Rh-Catalyzed Dehydrogenative Cyclization (Tables 1−3, Scheme 2, eq 1). Thiophene 1 (0.2 mmol), alkyne 2, rhodium catalyst, and $Cu(OAc)₂·H₂O$ (0.4 mmol) were placed in a 20 mL two-neck flask equipped with a reflux condenser, a N_2 [balloon,](#page-1-0) [an](#page-2-0)d [a rubber cu](#page-1-0)p. $\overline{\text{DMF}}$ (2.0 mL) was added via syringe, and the resulting mixture was stirred at 100 °C for 16 h. After cooling to room temperature, the reaction mixture was extracted with EtOAc (10 mL \times 3) containing ethylenediamine (ca. 1 mL). The organic layer was washed with H_2O and dried over Na_2SO_4 . After removal of the solvent in vacuo, the residue was subjected to silica gel column chromatography to give 3.

Dehydrogenative Cyclization with 2-(Thiophen-2-yl) **pyridine (5) (Scheme 2, eq 2).** 2-(Thiophen-2-yl)pyridine (5) (0.2 mmol), diphenylacetylene 2a (0.5 mmol), $[Cp*Rh(MeCN)]$ - $[SbF₆]₂$ (4.0 mol %), and Cu(OAc)₂·H₂O (0.4 mmol) were placed in a 20 mL two-neck fl[ask equipp](#page-1-0)ed with a reflux condenser, a N_2 balloon, and a rubber cup. DMF (2.0 mL) was added via syringe, and the resulting mixture was stirred at 100 °C for 16 h. After cooling to room temperature, the reaction mixture was extracted with EtOAc (10 mL × 3) containing ethylenediamine (ca. 1 mL). The organic layer was washed with H_2O and dried over Na_2SO_4 . After removal of the solvent in vacuo, the residue was subjected to silica gel column chromatography (eluent: hexane/EtOAc = $3/1$) to give 6 in 42% yield.

Dehydrogenative Cyclization with O-Methyl Oxime 7 (Scheme 2, eq 3). 1-(Thiophen-2-yl)ethan-1-one O-methyl oxime (7) (0.2 mmol), diphenylacetylene 2a (0.5 mmol), [Cp*Rh- $(MeCN)_3$][SbF₆]₂ (4.0 mol %), and Cu(OAc)₂·H₂O (0.4 mmol) [were](#page-1-0) [placed](#page-1-0) in a 20 mL two-neck flask equipped with a reflux condenser, a N_2 balloon, and a rubber cup. DMF (2.0 mL) was added via syringe, and the resulting mixture was stirred at 100 °C for 16 h. After cooling to room temperature, the reaction mixture was extracted with EtOAc (10 mL \times 3) containing ethylenediamine (ca. 1 mL). The organic layer was washed with H_2O and dried over Na_2SO_4 . After removal of the solvent in vacuo, the residue was subjected to silica gel column chromatography (eluent: hexane/EtOAc = $3/1$) to give 8 in 65% yield.

Pd-Catalyzed Arylation of 3ca with Aryl Bromide (Scheme 3, eq 4). Benzo $[c]$ thiophene 3ca (0.1 mmol) , 4-bromotoluene (0.2 mmol) mmol), $Pd(OAc)_{2}$ (10 mol %), PPh_{3} (20 mol %), CuI (0.2 mmol), and Cs , CO_3 (0.2 mmol) were placed in a 20 mL tw[o-neck](#page-3-0) flask equipped with a reflux condenser, a N_2 balloon, and a rubber cup. DMF (1.0 mL) was added via syringe, and the resulting mixture was stirred at 140 °C for 48 h. After cooling to room temperature, the reaction mixture was extracted with EtOAc (10 mL \times 3) containing ethylenediamine (ca. 1 mL). The organic layer was washed with H_2O and dried over $Na₂SO₄$. After removal of the solvent in vacuo, the residue was subjected to silica gel column chromatography (eluent: hexane/EtOAc = $3/1$) to give 9 in 64% yield.

Product Characterization Data. Pyrrolidin-1-yl(4,5,6,7 tetraphenylbenzo[c]thiophen-1-yl)methanone (3aa). Purified by silica gel column chromatography (eluent: hexane/EtOAc = $1/1$), 102 mg (95% yield), yellow solid; mp 235−236 °C, ¹ H NMR (400 MHz, CDCl₃) δ 1.58 (br), 2.59 (br), 3.05 (br), 6.77–7.45 (m) with rotamers; ¹H NMR (400 MHz, DMSO- d_6) δ 1.40–1.70 (br, 4.2H), 2.96 (br, 2.40H), 6.72−6.94 (m, 10H), 6.98−7.38 (m, 10H), 7.50 (s, 1H) with rotamers; ¹³C NMR (100 MHz, CDCl₃) δ 24.4, 25.6, 45.7, 48.8, 118.2, 125.5, 125.6, 126.7, 126.8, 126.8, 127.9, 129.8, 130.7, 131.5, 131.5, 132.5, 133.0, 133.4, 136.7, 138.4, 139.1, 139.5, 139.7, 140.0, 140.1, 163.3; ¹³C NMR (100 MHz, DMSO-d₆) δ 23.7, 25.0, 45.2, 48.1, 118.2, 125.4, 125.5, 126.4, 126.6, 126.8, 127.8, 130.2, 130.4, 131.0, 131.9, 132.1, 132.7, 136.2, 137.6, 138.4, 138.5, 138.8, 139.6, 139.6, 161.6 with rotamers; HRMS (APCI) m/z calcd for $C_{37}H_{30}NOS$ $([M + H]^+)$ 536.2043, found 536.2052.

N,N-Diisopropyl-4,5,6,7-tetraphenylbenzo[c]thiophene-1-carboxamide (3ba). Purified by silica gel column chromatography (eluent: hexane/EtOAc = $3/1$), 107 mg (95% yield), yellow solid; mp 252− 253 °C, ¹H NMR (400 MHz, CDCl₃) δ 0.83 (d, J = 3.4 Hz, 3H), 1.01 $(d, J = 3.3 \text{ Hz}, 3\text{H}), 1.11 (d, J = 3.3 \text{ Hz}, 3\text{H}), 1.33 (d, J = 3.4 \text{ Hz}, 3\text{H}),$ 3.15−3.22 (m, 1H), 3.96−4.02 (m, 1H), 3.37−3.46 (m, 1H), 6.72− 7.40 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 19.9, 20.0, 20.8, 21.3, 45.9, 51.3, 117.0, 125.3, 125.5, 126.4, 126.7, 126.8, 127.0, 127.6, 127.8, 128.0, 130.4, 130.5, 130.9, 131.1, 131.3, 131.4, 131.6, 132.8, 133.2, 133.3, 133.9, 136.8, 138.8, 139.2, 139.6, 140.0, 140.1, 140.3, 163.4; HRMS (APCI) m/z calcd for C₃₉H₃₆NOS ([M + H]⁺) 566.2512, found 566.2517.

N,N-Diethyl-4,5,6,7-tetraphenylbenzo[c]thiophene-1-carboxamide (3ca). Purified by silica gel column chromatography (eluent: hexane/EtOAc = 2/1), 102 mg (95% yield), yellow solid; mp 222− 223 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.82 (t, J = 7.2 Hz, 3H), 1.00 $(t, J = 7.1 \text{ Hz}, 3H), 2.67 - 2.75 \text{ (m, 1H)}, 2.85 - 3.00 \text{ (m, 2H)}, 3.37 -$ 3.46 (m, 1H), 6.74–7.43 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 13.3, 14.4, 40.3, 44.6, 117.9, 125.4, 125.6, 126.5, 126.7, 126.8, 126.8, 126.9, 127.6, 127.8, 128.0, 129.3, 130.1, 130.5, 130.9, 131.3, 131.4, 131.5, 131.5, 132.0, 132.8, 133.3, 133.6, 136.7, 138.6, 139.2, 139.5, 139.6, 140.0, 140.1, 164.4; HRMS (APCI) m/z calcd for $C_{37}H_{32}NOS$ $([M + H]^+)$ 538.2199, found 538.2207.

N,N-Dimethyl-4,5,6,7-tetraphenylbenzo[c]thiophene-1-carboxamide (3da). Purified by silica gel column chromatography (eluent: hexane/EtOAc = 1/1), 96 mg (94% yield), yellow solid; mp 275−276 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3H), 2.63 (s, 3H), 6.72− 7.47 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 34.9, 39.5, 118.49, 125.5, 125.6, 126.6, 126.8, 126.9, 126.9, 127.7, 128.1, 128.6, 130.0, 130.5, 130.8, 131.5, 131.8, 132.6, 133.4, 133.6, 136.6, 138.3, 139.2, 139.4, 139.6, 140.0, 140.0, 165.0; HRMS (APCI) m/z calcd for $C_{35}H_{28}NOS ([M + H]^+)$ 510.1886, found 510.1866.

N,N-Diethyl-4,5,6,7-tetra-p-tolylbenzo[c]thiophene-1-carbox*amide (3cb)*. Purified by silica gel column chromatography (eluent: hexane/EtOAc = 2/1), 104 mg (88% yield), yellow solid; mp 251− 252 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.82 (t, J = 7.2 Hz, 3H), 0.98 $(t, J = 7.1 \text{ Hz}, 3\text{H})$, 2.08 (s, 3H), 2.10 (s, 3H), 2.22 (s, 3H), 2.30 (s, 3H), 2.64−2.71 (m, 1H), 2.91−2.97 (m, 2H), 3.34−3.41 (m, 1H), 6.61−7.41 (m, 17H); 13C NMR (100 MHz, CDCl3) δ 13.2, 14.3, 21.2, 21.3, 21.4, 40.1, 44.5, 117.6, 127.2, 127.4, 127.4, 128.3, 128.4, 128.5, 128.7, 128.9, 129.9, 130.3, 130.7, 131.1, 131.3, 131.7, 132.6, 133.1,

134.0, 134.4, 134.6, 135.9, 136.0, 136.1, 136.8, 136.9, 137.2, 137.3, 139.4, 139.9, 164.6; HRMS (APCI) m/z calcd for C₄₁H₄₀NOS ([M + H]+) 594.2825, found 594.2807.

4,5,6,7-Tetrakis(4-tert-butylphenyl)-N,N-diethylbenzo[c] thiophene-1-carboxamide (3cc). Purified by silica gel column chromatography (eluent: hexane/EtOAc = 5/1), 120 mg (79% yield), yellow solid; 241–242 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.74 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.1 Hz, 3H), 1.07 (s, 9H), 1.08 (s, 9H), 1.19 (s, 9H), 1.27 (s, 9H), 2.60−2.69 (m, 1H), 2.83−2.97 (m, 2H), 3.37−3.46 (m, 1H), 6.52−7.28 (m, 17H); 13C NMR (100 MHz, CDCl₃) δ 13.4, 14.4, 31.3, 31.4, 31.4, 34.1, 34.2, 34.5, 34.6, 40.3, 44.5, 117.7, 122.9, 123.2, 123.3, 123.6, 124.0, 124.3, 124.7, 128.8, 130.1, 130.6, 131.0, 131.0, 131.1, 131.2, 131.4, 132.6, 133.0, 133.5, 135.8, 136.7, 137.1, 137.3, 137,3, 139.6, 140.0, 147.6, 147.9, 149.1, 149.3, 164.7; HRMS (APCI) m/z calcd for C₅₃H₆₄NOS ([M + H]⁺) 762.4703, found 762.4704.

N,N-Diethyl-4,5,6,7-tetrakis(4-fluorophenyl)benzo[c]thiophene-1 carboxamide (3cd). Purified by silica gel column chromatography (eluent: hexane/EtOAc = $2/1$), 109 mg (90% yield), yellow solid; mp 212−213 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (t, J = 7.1 Hz, 3H), 1.03 (t, J = 7.1 Hz, 3H), 2.71−2.77 (br, 1H), 2.99−3.04 (m, 2H), 3.35−3.40 (br, 1H), 6.56−7.43 (m, 17H); 13C NMR (100 MHz, CDCl3) δ 13.2, 14.3, 40.3, 44.5, 113.9, 114.1, 114.3, 114.4, 114.8, 115.0, 115.2, 115.4, 118.1, 129.7, 131.3, 131.4, 131.8, 131.9, 132.3, 132.3, 132.3, 132.4, 132.6, 132.7, 132.7, 132.8, 132.9, 133.6, 133.6, 133.7, 134.2 (d, ${}^{3}J_{\text{C-F}} = 3.5 \text{ Hz}$), 135.0 (d, ${}^{3}J_{\text{C-F}} = 3.7 \text{ Hz}$), 135.6 (d, ${}^{3}J_{\text{C-F}} = 3.7 \text{ Hz}$), 135.8 (d, ${}^{3}J_{\text{C-F}} = 3.7 \text{ Hz}$), 135.8 (d, ${}^{3}J_{\text{C-F}} = 3.7 \text{ Hz}$), 136.9 (d, ${}^{3}J_{\text{C-F}} = 3.7 \$ $\binom{3}{2}$ _{C-F} = 3.3 Hz), 135.7 (d, $\binom{3}{2}$ _{C-F} = 3.7 Hz), 135.9, 138.4, 139.4, 160.9 (d, ¹_L = 244.3 Hz), 161.0 (d, ¹L = 245.2 $J_{\text{C-F}} = 244.3 \text{ Hz}$), 161.0 (d, $^{1}J_{\text{C-F}} = 244.3 \text{ Hz}$), 161.8 (d, $^{1}J_{\text{C-F}} = 245.2$ Hz), 162.0 (d, $^{1}J_{\text{C-F}}$ = 245.0 Hz), 164.1; ¹³C {¹H, ¹⁹F} NMR (400 MHz, CDCl₃) δ 13.1, 14.3, 40.2, 44.5, 114.0, 114.0, 114.1, 114.2, 114.3, 114.9, 115.0, 115.3, 118.1, 129.6, 131.3, 131.9, 132.3, 132.3, 132.5, 132.6, 132.7, 132.8, 132.9, 133.5, 133.6, 134.2, 135.0, 135.6, 135.6, 135.9, 138.3, 139.4, 160.8, 161.0, 161.8, 161.9, 164.0; 19F NMR (376 MHz, CDCl₃) δ -116.31, -116.19, -115.08, -114.83; HRMS (APCI) m/z calcd for $C_{37}H_{28}F_4NOS$ ([M + H]⁺) 610.1822, found 610.1814.

N,N-Diethyl-4,5,6,7-tetrakis[4-(trifluoromethyl)phenyl]benzo[c] thiophene-1-carboxamide (3ce). Purified by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), 156 mg (96% yield), yellow solid; mp 225−226 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.80 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.1 Hz, 3H), 2.78 (br, 1H), 2.91−2.96 (m, 2H), 3.37 (br, 1H), 6.84−7.52 (m, 17H); 13C NMR $(100 \text{ MHz}, \text{CDCl}_3)$ δ 13.0, 14.4, 40.3, 44.6, 118.7, 119.8, 120.0, 122.5, 122.6, 122.7, 124.2, 124.4, 125.0, 125.3, 125.3, 125.4, 128.0, 128.1, 128.3, 128.5, 128.6, 128.8, 128.9, 129.1, 129.2, 129.3, 129.5, 129.6, 129.9, 130.0, 130.2, 130.5, 130.6, 131.0, 131.5, 132.4, 132.6, 133.0, 133.1, 135.0, 137.3, 138.8, 141.4, 142.2, 142.7, 142.7, 163.5; ¹³C {¹H, ¹⁹F} NMR (400 MHz, CDCl₃) δ13.0, 14.4, 40.3, 44.6, 93.8, 118.7, 124.1, 124.4, 128.6, 128.7, 129.7, 129.8, 130.5, 131.4, 131.5, 132.6, 133.0, 133.1, 135.0, 137.3, 138.8, 141.4, 142.0, 142.2, 142.6, 142.7, 163.5; ¹⁹F NMR (376 MHz, CDCl₃) δ −62.86, −62.81, −62.76, −62.64; HRMS (APCI) m/z calcd for C₄₁H₂₈F₁₂NOS ([M + H]⁺) 810.1695, found 810.1692.

Tetraethyl 4,4′,4″,4‴-(1-(diethylcarbamoyl)benzo[c]thiophene-4,5,6,7-tetrayl)tetrabenzoate (3cf). Purified by silica gel column chromatography (eluent: hexane/EtOAc = $1/1$), 139 mg (84% yield), yellow solid; mp 133−134 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.79 (t, $J = 7.1$ Hz, 3H), 1.04 (t, $J = 7.0$ Hz, 3H), 1.32 (t, $J = 7.1$ Hz, 6H), 1.36 $(t, J = 7.1 \text{ Hz}, 3\text{H})$, 1.39 $(t, J = 7.1 \text{ Hz}, 3\text{H})$, 2.79 $(\text{br}, 1\text{H})$, 2.89–2.94 (m, 2H), 3.38 (br, 1H), 4.23−4.39 (m, 8H), 6.82−7.93 (m, 17H); 13C NMR (100 MHz, CDCl₃) δ 13.0, 14.4, 14.4, 14.4, 14.5, 40.3, 44.6, 61.0, 61.1, 61.2, 118.4, 128.1, 128.3, 128.4, 128.6, 129.2, 129.4, 129.5, 129.5, 129.7,131.1, 131.2, 131.9, 132.6, 133.1, 133.2, 135.4, 137.6, 138.8, 142.7, 143.4, 144.0, 144.1, 163.7, 166.4; HRMS (APCI) m/z calcd for $C_{49}H_{48}NO_9S$ ([M + H]⁺) 826.3044, found 826.3040.

N,N-Diethyl-4,5,6,7-tetrakis(4-methoxyphenyl)benzo[c] thiophene-1-carboxamide $(3cg)$. Purified by silica gel column chromatography (eluent: hexane/EtOAc = $1/1$), 120 mg (89%) yield), yellow solid; mp 143–144 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.85 (t, J = 7.2 Hz, 3H), 0.98 (t, J = 7.1 Hz, 3H), 2.63–2.72 (m, 1H), 2.96−3.02 (m, 2H), 3.34−3.43 (m, 1H), 3.61 (s, 3H), 3.62 (s, 3H), 3.73, (s, 3H), 3.78 (s, 3H), 6.38−7.43 (m, 17H); 13C NMR (100 MHz, CDCl₃) δ 13.3, 14.3, 40.2, 44.5, 55.0, 55.2, 55.3, 112.2, 112.3, 112.4, 113.2, 113.4, 117.6, 129.0, 131.2, 131.3, 131.5, 131.6, 132.0, 132.2, 132.3, 132.4, 132.5, 132.5, 132.5, 132.8, 132.9, 132.9, 133.0, 134.1, 136.8, 139.4, 140.0, 157.0, 157.1, 158.2, 158.3, 164.6; HRMS (APCI) m/z calcd for $C_{41}H_{40}NO_5S$ ([M + H]⁺) 658.2622, found 658.2633.

4,5,6,7-Tetrakis(3,4-dimethoxyphenyl)-N,N-diethylbenzo[c] thiophene-1-carboxamide $(3ch)$. Purified by silica gel column chromatography (eluent: EtOAc), 128 mg (83% yield), yellow solid; mp 127−128 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.84 (br, 3H), 0.92 (br, 3H), 2.57 (br, 1H), 3.01 (br, 2H), 3.33 (br, 1H), 3.43−3.88 (m, 24H), 6.30–7.59 (m, 13H); ¹³C NMR (100 MHz, CDCl₃) δ 12.9, 13.2, 14.2, 29.8, 40.1, 40.2, 44.0, 44.4, 55.6, 55.7, 55.8, 55.9, 109.8, 110.3, 111.0, 114.1, 114.4, 115.1, 115.3, 115.4, 115.7, 117.9, 118.2, 122.6, 122.7, 123.2, 124.0, 124.3, 124.6, 124.8, 129.5, 131.4, 132.4, 133.1, 138.8, 139.4, 139.5, 146.7, 146.8, 147.6, 147.7, 147.8, 148.0, 148.3, 148.5, 164.6; HRMS (APCI) m/z calcd for $C_{45}H_{47}NO_{9}S$ ([M + H]⁺) 778.3044, found 778.3062.

N,N-Diethyl-4,5,6,7-tetrapropylbenzo[c]thiophene-1-carboxamide (3ci). Purified by silica gel column chromatography (eluent: hexane/EtOAc = $3/1$), 26 mg (33% yield), pale yellow oil; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$ δ 0.97–1.71 (m, 26H), 2.55–2.84 (m, 8H), 3,14 $(br, 1H)$, 3.41 $(br, 1H)$, 3.80 $(br, 1H)$, 7.51 $(s, 1H)$; ¹³C NMR (100) MHz, CDCl₃) δ 12.8, 14.0, 14.9, 15.0, 15.1, 15.2, 23.8, 24.3, 25.0, 25.1, 31.9, 32.0, 32.0, 32.8, 39.7, 43.9, 113.5, 125.3, 129.7, 130.1, 134.5, 134.7, 136.8, 139.7, 166.7; HRMS (APCI) m/z calcd for $C_{25}H_{40}NOS$ $([M + H]^+)$ 402.2825, found 402.2851

N,N-Diethyl-3-methyl-4,5,6,7-tetraphenylbenzo[c]thiophene-1 carboxamide (3ha). Purified by silica gel column chromatography (eluent: hexane/EtOAc = $3/1$), 99 mg (90% yield), yellow solid; mp 226−227 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.80 (t, J = 7.0 Hz, 3H), 1.03 (t, J = 6.9 Hz, 3H), 1.95 (s, 3H), 2.70−2.76 (m, 1H), 2.85−2.95 (m, 2H), 3.47−3.52 (m, 1H), 6.72−7.15 (m, 20H); 13C NMR (100 MHz, CDCl₃) δ 13.3, 14.5, 15.7, 40.2, 44.6, 123.4, 125.2, 125.3, 126.4, 126.6, 126.7, 126.8, 127.2, 127.5, 127.5, 130.0, 131.0, 131.2, 131.4, 131.4, 132.1, 132.2, 133.1, 133.3, 133.8, 135.3, 137.4, 138.7, 138.7, 139.8, 140.0, 140.2, 164.6; HRMS (APCI) m/z calcd for $C_{38}H_{34}NOS$ $([M + H]^+)$ 552.2356, found 552.2343.

N,N-Diethyl-3,4,5,6,7-pentaphenylbenzo[c]thiophene-1-carboxamide (3ia). Purified by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), 89 mg (72% yield), yellow solid; mp 128−129 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 0.83 (t, J = 7.2 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H), 2.81−3.02 (m, 3H), 3.58−3.66 (m, 1H), 6.62−7.33 (m, 25H); ¹³C NMR (100 MHz, CDCl₃) δ 13.3, 14.5, 40.2, 44.8, 125.2, 125.3, 125.9, 126.4, 126.4, 126.6, 126.7, 126.9, 127.0, 127.1, 127.2, 127.6, 127.7, 127.8, 129.8, 130.1, 130.5, 131.2, 131.2, 131.4, 131.4, 131.5, 131.6, 131.7, 132.3, 132.7, 133.2, 133.6, 134.3, 135.6, 136.6, 138.1, 138.5, 138.6, 139.1, 140.2, 140.2, 164.3; HRMS (APCI) m/z calcd for $C_{43}H_{36}NOS$ ([M + H]⁺) 614.2544, found 614.2530.

N,N-Diethyl-3-phenyl-4,5,6,7-tetrakis(4-(trifluoromethyl)phenyl) benzo[c]thiophene-1-carboxamide (3ie). Purified by silica gel column chromatography (eluent: hexane/EtOAc = $3/1$), 118 mg (69% yield), yellow solid; mp 236−237 °C; ¹ H NMR (400 MHz, CDCl₃) δ 0.80 (t, J = 7.1 Hz, 3H), 1.06 (t, J = 7.0 Hz, 3H), 2.88–2.97 (m, 3H), 3.56−3.62 (m, 1H), 6.76−7.47 (m, 21H); 13C NMR (100 MHz, CDCl₃) δ 13.0, 14.5, 40.2, 44.7, 122.5, 122.6, 122.7, 124.0, 124.2, 125.0, 125.2, 125.4, 127.6, 128.0, 128.0, 128.1, 128.2, 128.3, 128.4, 128.4, 128.6, 128.7, 129.0, 129.5, 129.8, 130.0, 130.1, 130.5, 131.1, 131.3, 131.5, 131.7, 132.2, 132.6, 132.9, 133.2, 133.3, 134.9, 136.5, 137.1, 137.6, 140.9, 141.6, 142.8, 142.9, 163.5; ¹³C {¹H, ¹⁹F} NMR (400 MHz, CDCl₃) δ13.0, 14.5, 40.2, 44.7, 122.4, 123.9, 123.9, 124.0, 124.0, 124.1, 124.2, 127.6, 127.6, 128.4, 128.5, 128.8, 129.6, 130.0, 130.5, 131.1, 131.2, 131.4, 131.6, 131.6, 132.2, 132.5, 132.9, 134.9, 136.5, 137.1, 137.6, 140.9, 141.6, 142.0, 142.8, 142.9, 163.5; ¹⁹F NMR (376 MHz, CDCl₃) δ −62.94, −62.86, −62.83, −62.73; HRMS (APCI) m/z calcd for $C_{47}H_{32}F_{12}NOS$ ([M + H]⁺) 886.2008, found 886.1993.

3-Chloro-N,N-diethyl-4,5,6,7-tetraphenylbenzo[c]thiophene-1 carboxamide (3ja). Purified by silica gel column chromatography (eluent: hexane/EtOAc = $3/1$), 88 mg (77% yield), yellow solid; mp 237−238 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.80 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.0 Hz, 3H), 2.73−2.96 (m, 3H), 3.45−3.51 (m, 1H), 6.71−7.34 (m, 20H); ¹³C NMR (100 MHz, CDCl₃) δ 13.3, 14.5, 40.4, 44.7, 122.3, 125.4, 125.5, 125.6, 126.5, 126.7, 126.8, 127.0, 127.1, 127.3, 127.7, 130.0, 131.0, 131.2, 131.4, 132.1, 132.5, 133.2, 134.0, 137.7, 137.9, 139.5, 139.6, 139.7, 163.2; HRMS (APCI) m/z calcd for $C_{37}H_{31}$ ClNOS ([M + H]⁺) 572.1809, found 572.1807.

(E)-3-(1,2-Diphenylvinyl)-N,N-diethylthiophene-2-carboxamide (4ca). Purified by silica gel column chromatography (eluent: hexane/ EtOAc = $3/1$), 17 mg (23% yield), pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.89 (br, 3H), 1.12 (br, 3H), 3.30–3.35 (m, 4H), 6.75 (d, J = 5.8 Hz, 1H), 6.87 (s, 1H), 6.94–7.27 (m, 10H); ¹³C NMR (100 MHz, CDCl3) δ 12.6, 14.2, 39.6, 43.5, 124.4, 127.1, 127.8, 128.1, 128.6, 128.9, 129.7, 130.2, 130.6, 133.1, 136.3, 137.0, 139.8, 142.4, 164.9; HRMS (APCI) m/z calcd for $C_{23}H_{24}NOS$ ([M + H]⁺) 362.1573, found 362.1569.

2-(4,5,6,7-Tetraphenylbenzo[c]thiophen-1-yl)pyridine (6). Purified by silica gel column chromatography (eluent: hexane/EtOAc = 3/1), 43 mg (42% yield), yellow solid; mp 205−206 °C; ¹ H NMR (400 MHz, CDCl₃) δ 6.66 (m, 1H), 6.70–6.90 (m, 16H), 7.00 (m, 1H), 7.15−7.32 (m, 6H), 8.32−8.36 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 119.8, 120.6, 125.4, 125.5, 125.6, 125.8, 126.6, 126.8, 126.9, 127.9, 130.8, 131.4, 131.5, 131.7, 132,6, 132.7, 133.7, 134.3, 136.4, 136.5, 138.8, 139.5, 139.6, 140.2, 140.3, 140.8, 148.4, 153.3; HRMS (APCI) m/z calcd for $C_{37}H_{26}NS$ ([M + H]⁺) 516.1780, found 516.1776.

7-Methyl-4-phenyl-5-(5,6,7,8-tetraphenylnaphthalen-1-yl) thieno[2,3-c]pyridine (8) .¹⁵ Purified by silica gel column chromatography (eluent: hexane/EtOAc = $3/1$), 86 mg (65% yield), yellow solid; mp 234−235 °C; ¹H N[MR](#page-7-0) (400 MHz, CDCl₃) δ 2.59 (s, 3H), 6.22− 6.28 (m, 1H), 6.46−6.88 (m, 14H), 6.91−6.96 (m, 1H), 7.02−7.30 (m, 12H), 7.34−7.40 (m, 1H), 7.42−7.51 (m, 2H); 13C NMR (100 MHz, CDCl₃) δ 23.3, 124.1, 124.5, 124.5, 125.0, 125.1, 125.2, 125.5, 126.2, 126.4, 126.4, 126.5, 126.6, 126.6, 127.4, 127.4, 127.5, 127.6, 128.1, 130.0, 130.3, 131.1, 131.1, 131.2, 131.3, 131.4, 131.5, 131.5, 131.9, 133.4, 133.6, 133.7, 137.5, 138.0, 138.3, 138.5, 138.6, 140.2, 140.4, 140.8, 140.9, 144.5, 150.0, 152.8; HRMS (APCI) m/z calcd for $C_{48}H_{34}NS$ ([M+H^{]+}) 656.2406, found 656.2413.

N,N-Diethyl-4,5,6,7-tetraphenyl-3-(p-tolyl)benzo[c]thiophene-1 carboxamide (9). Purified by silica gel column chromatography (eluent: hexane/EtOAc = $3/1$), 40 mg (64% yield), yellow solid; mp 227−228 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.82 (t, J = 7.2 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H), 2.20 (s, 3H), 2.80−3.01 (m, 3H), 3.57−3.66 (m, 1H), 6.55−6.90 (m, 19H), 7.02−7.22 (m, 4H), 7.27−7.38 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.3, 14.5, 21.2, 40.2, 44.8, 125.2, 125.3, 125.6, 126.3, 126.4, 126.5, 126.6, 126.6, 126.7, 126.9, 127.1, 127.7, 127.9, 130.0, 130.3, 131.2, 131.3, 131.4, 131.4, 131.6, 131.7, 131.7, 132.2, 132.6, 133.1, 133.7, 135.5, 136.3, 136.8, 138.2, 138.3, 138.7, 139.0, 140.2, 140.3; HRMS (APCI) m/z calcd for $C_{44}H_{38}NOS ([M + H]^+)$ 628.2669, found 628.2680.

■ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00030.

Detailed information for structural determination of [compound](http://pubs.acs.org) 3aa and NMR [spectra for the produ](http://pubs.acs.org/doi/abs/10.1021/acs.joc.6b00030)cts (PDF)

Crystallographic data for 3aa (CIF)

■ A[UTHO](http://pubs.acs.org/doi/suppl/10.1021/acs.joc.6b00030/suppl_file/jo6b00030_si_001.pdf)R INFORMATION

Corresponding Author

*E-mail: miura@chem.eng.osaka-u.ac.jp.

Notes

The auth[ors declare no competing](mailto:miura@chem.eng.osaka-u.ac.jp) financial interest.

■ ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scientific Research from the MEXT, JSPS, and JST (ACT-C) of Japan.

■ REFERENCES

(1) Miura, M.; Satoh, T.; Hirano, K. Bull. Chem. Soc. Jpn. 2014, 87, 751−764 and references therein.

(2) For recent examples, see: (a) Yamashita, M.; Horiguchi, H.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 7481−7488. (b) Shi, Z.; Zhang, B.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2010, 49, 4036−4041. (c) Shi, Z.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 7895−7898. (d) Shi, Z.; Cui, Y.; Jiao, N. Org. Lett. 2010, 12, 2908−2911. (e) Wang, L.; Huang, J.; Peng, S.; Liu, H.; Jiang, X.; Wang, J. Angew. Chem., Int. Ed. 2013, 52, 1768−1772. (f) Su, T.; Han, X.; Lu, X. Tetrahedron Lett. 2014, 55, 27−30. (g) Morioka, R.; Nobushige, K.; Satoh, T.; Hirano, K.; Miura, M. Org. Lett. 2015, 17, 3130−3133.

(3) For selected examples, see: (a) Bałczewski, P.; Bodzioch, A.; Różycka-Sokołowska, E.; Marciniak, B.; Uznański, P. Chem.-Eur. J. 2010, 16, 2392−2400. (b) Palayangoda, S. S.; Cai, X.; Adhikari, R. M.; Neckers, D. C. Org. Lett. 2008, 10, 281−284. (c) Li, Y.; Wu, Y.; Gardner, S.; Ong, B. S. Adv. Mater. 2005, 17, 849−853. (d) Hu, N.-X.; Xie, S.; Popovic, Z.; Ong, B.; Hor, A.-M.; Wang, S. J. Am. Chem. Soc. 1999, 121, 5097−5098.

(4) For selected reviews, see: (a) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Chem. Rev. 2012, 112, 3193−3328. (b) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303−4428.

(5) For selected reviews, see: (a) Sista, P.; Biewer, M. C.; Stefan, M. C. Macromol. Rapid Commun. 2012, 33, 9−20. (b) Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E. Adv. Mater. 2011, 23, 4347− 4370. (c) Wu, W.; Liu, Y.; Zhu, D. Chem. Soc. Rev. 2010, 39, 1489− 1502. (d) Chen, J.; Cao, A. Y. Acc. Chem. Res. 2009, 42, 1709−1718. (e) Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Angew. Chem., Int. Ed. 2008, 47, 4070−4098.

(6) (a) Takamatsu, K.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2015, 80, 3242−3249. (b) Iitsuka, T.; Hirano, K.; Satoh, T.; Miura, M. Chem.Eur. J. 2014, 20, 385−389. (c) Iitsuka, T.; Schaal, P.; Hirano, K.; Satoh, T.; Bolm, C.; Miura, M. J. Org. Chem. 2013, 78, 7216−7222. (7) For early examples of benzo $[c]$ thiophenes synthesis, see: (a) Mayer, R.; Kleinert, H.; Richter, S.; Gewald, K. J. Prakt. Chem. 1963, 20, 244−249. (b) Cava, M. P.; Deana, A. A. J. Am. Chem. Soc. 1959, 81, 4266−4268. (c) Cava, M. P.; Pollack, N. M. J. Am. Chem. Soc. 1966, 88, 4112−4113.

(8) (a) Wudl, F.; Kobayashi, M.; Heeger, A. J. J. Org. Chem. 1984, 49, 3382−3384. (b) Kobayashi, M.; Colaneri, N.; Boysel, M.; Wudl, F.; Heeger, A. J. J. Chem. Phys. 1985, 82, 5717–5723. (c) Bäuerle, P.; Götz, G.; Emerle, P.; Port, H. Adv. Mater. 1992, 4, 564−568. (d) Lorcy, D.; Cava, M. P. Adv. Mater. 1992, 4, 562−564. (e) Musmanni, S.; Ferraris, J. P. J. Chem. Soc., Chem. Commun. 1993, 172−174.

(9) Kisselev, R.; Thelakkat, M. Chem. Commun. 2002, 1530−1531.

(10) Suda, Y.; Onikubo, S. Jpn. Kokai Tokkyo Koho JP 2004-018665 (CAN 140:101794), 2002.

(11) (a) D'Auria, M.; Guarnaccio, A.; Racioppi, R.; Santagata, A.; Teghil, R. Synlett 2013, 24, 943−946. (b) Silva, T. J. L.; Mendes, P. J.; Garcia, M. H.; Robalo, M. P.; Ramalho, J. P. P.; Carvalho, A. J. P.; Büchert, M.; Wittenburg, C.; Heck, J. Eur. J. Inorg. Chem. 2013, 2013, 3506−3517.

(12) For a review, see: Cava, M. P.; Levinson, M. I. Tetrahedron 1985, 41, 5061−5087.

(13) (a) Kawabata, K.; Takeguchi, M.; Goto, H. Macromolecules 2013, 46, 2078−2091. (b) Amaladass, P.; Clement, J. A.; Mohanakrishnan, A. K. Eur. J. Org. Chem. 2008, 2008, 3798−3810. (c) Kiebooms, R. H. L.; Adriaensens, P. J. A.; Vanderzande, D. J. M.; Gelan, J. M. J. V. J. Org. Chem. 1997, 62, 1473−1480. (d) Musmanni, S.; Ferraris, J. P. J. Chem. Soc., Chem. Commun. 1993, 172−174.

(14) Mochida, S.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2010, 39, 744−746.

(15) Liu, B.; Hu, F.; Shi, B.-F. Adv. Synth. Catal. 2014, 356, 2688− 2696.

(16) Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467−473.

(17) For a crystal structure of 3aa, see the Supporting Information. (18) Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2008, 47, 4019−4022.

(19) (a) Stuart, D. R.; Alsabeh, P.; Kuhn[, M.; Fagnou, K.](http://pubs.acs.org/doi/suppl/10.1021/acs.joc.6b00030/suppl_file/jo6b00030_si_001.pdf) J. Am. Chem. Soc. 2010, 132, 18326−18339. (b) Esqueda, A. C.; Conejero, S.; Maya, M.; Carmona, E. Organometallics 2009, 28, 45−47.